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Abstract
A two-level atom interacting with a single mode of quantized electromagnetic
radiation is discussed using a new representation in which the atom and the
radiation are unified into a single canonical Bose field. At the twice resonance,
when the frequency of the original radiation is twice the atomic transition
frequency (ω = 2ε), the emergent unified field in the non-interacting atom–
field system resembles a free radiation of frequency ε. This free emergent
radiation is further shown to exist in the presence of an interaction which looks
similar to the atom–field interaction in the dipole approximation. The one-
photon correlation and the population inversion are discussed as the possible
means of observing the emergent radiation. The entanglement properties of
the emergent radiation are also discussed.

PACS numbers: 42.50.Ct, 42.50.Dv, 03.67.Mn, 42.50.Pq, 05.30.Jp

1. Introduction

Matter–radiation interaction problems are of central importance to all branches of physics. A
typical problem of this kind, in quantum optics for example, concerns the interaction of light
with an atom in the long wavelength (dipole) approximation [1, 2]. In a useful simplification
of the atom–field problem, the atom is often approximated as an effective two-level system. In
a fully quantum-theoretic formulation, the light is treated as a quantized radiation field. The
corresponding atom–field Hamiltonians, for example the Dicke maser model [3] or the Rabi
model [4], form the basis of understanding for a number of physical phenomena, such as the
cooperative superradiant emission [3], or the oscillations of the population inversion and their
collapse and revival [5–7].

In this paper, we consider a two-level atom interacting with a single mode of quantized
radiation and predict the emergence of a free unified radiation at the twice resonance. The
term twice resonance refers to the condition when the frequency of the original radiation
is twice the atomic transition frequency. The present study is based on, and inspired by, a
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representation in which a two-level atom and a quantized single-mode radiation are unified
into a single Bose field [8]. The existence of this free emergent radiation, whose frequency is
the same as the atomic transition frequency, is first demonstrated in the non-interacting case.
It is then shown to exist in an interacting system, which is similar to the atom–photon model
in the dipole approximation. We discuss the time dependence of the one-photon correlation
and the population inversion in simple situations to illustrate its physical effects. We also
study the atom–photon entanglement in an emergent radiation state.

Let us first very briefly recall the two-level atom and the quantized radiation. Through this,
we also fix the notations and vocabulary for our main discussion. Let |g〉 and |e〉 denote the
ground and excited states of a two-level atom, respectively. Let ε be the energy difference of the
two atomic levels and ε̄ be their average. The Hamiltonian of such an isolated two-level atom
can be written as Hatom = ε̄I + ε

2σ z, where I is the identity operator and σ z = |e〉〈e| − |g〉〈g|
is the z-component Pauli operator. Physically, σ z measures the population inversion (the
difference of probabilities of finding the atom in the excited and ground states). The transition
between the atomic levels is described in terms of the other two Pauli operators, σ + = |e〉〈g|
and σ− = |g〉〈e|. Together, σ z and σ± satisfy the usual spin-1/2 operator algebra.

A single mode of the quantized electromagnetic radiation is described in terms of the
Bose operators, b̂ and b̂†, which annihilate and create a photon, respectively. These operators
act in the Fock space of photons, spanned by the basis, {|m〉,m = 0, 1, . . . ,∞}, such that
b̂|m〉 = √

m|m − 1〉 and b̂†|m〉 = √
m + 1|m + 1〉. The ket |m〉 denotes the m-photon state

for the given mode of radiation. The Hamiltonian of such a single-mode quantized radiation
can be written as Hfield = ω

(
b̂†b̂ + 1

2

)
, where b̂†b̂ is the photon number operator, that is,

b̂†b̂|m〉 = m|m〉 and ω is the photon energy (h̄ = 1).
The interaction of a two-level atom with a single mode of quantized radiation is given,

in the dipole approximation, by Vdipole = (b̂† + b̂)σ x , where σx = σ + + σ− measures the
electric dipole of the atom and the electric field of the radiation is proportional to b̂† + b̂.
The simplest analysis of the matter–radiation problem can therefore be carried out in terms of
the Hamiltonian, Hfield + Hatom + gVdipole, where g is the dipole–radiation coupling [1]. This
model has been of fundamental interest to studies on quantum optics and magnetic resonance
[4]. In the rotating wave approximation due to Jaynes and Cummings, for ω close to ε, Vdipole

is approximated by VJC = (b̂†σ− + b̂σ +), by ignoring the faster processes, b̂†σ + + b̂σ−.
This simplification results in the exactly solvable Jaynes–Cummings (JC) model [9]. The
interaction arising in the present study is similar to Vdipole, but not the same.

The remainder of the paper is organized as follows. In the following section, first
we present the unified boson representation which is the nucleus of this work. Then, we
introduce the idea of an emergent radiation, through an observation in the non-interacting
atom–field system. In section 3, we discuss the existence of the emergent radiation in an exactly
solvable interacting model. We discuss the one-photon correlation and population inversion in
section 4. There, we try to understand the physical observable effects of the emergent
radiation. We also discuss the atom–photon entanglement in section 5. Finally, we conclude
with a summary and some observations.

2. Unified boson representation

Recently, we have invented a new representation in which the radiation operators, b̂ and b̂†,
and the atomic operators, σ z and σ±, are unified into a single canonical Bose operator [8]. Let
â† be the creation operator of the unified boson. Then, according to our representation,

â† =
√

2
[√

b̂†b̂ + 1
2σ + + b̂†σ−]

. (1)

2
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The operators, â† and â, satisfy the bosonic commutation relations and act on the new Fock
states, {|n〉, n = 0, 1, . . . ,∞}, defined as |n = 2m〉 = |m〉⊗|g〉 and |n = 2m+1〉 = |m〉⊗|e〉.
The representation in equation (1) is based on this definition of the |n〉 kets (please refer to
appendix B of [8] for details). The corresponding inverse representation is given by the
equations:

σ z = −cos (πâ†â) := −χ̂ , (2)

σ + = 1 − χ̂

2

1√
N̂

â† (3)

and

b̂† = â†â†
√

2

(
1 − χ̂

2

1√
N̂ + 2

+
1 + χ̂

2

1√
N̂ + 1

)
, (4)

where χ̂ can also be written as (−)N̂ and N̂ = â†â is the number operator of the unified boson.
The inverse representation is completely consistent, as it satisfies the necessary algebra1.

2.1. Emergent radiation at twice resonance

Through the inverse transformation, we can convert any problem of a two-level atom interacting
with a single-mode of quantized radiation to an equivalent problem of the unified boson field.
In general, it will be a highly nonlinear unified field problem. The corresponding energy
eigenstates are not expected to be like that of a free electromagnetic radiation (the hallmark
of which is the equidistant successive photon states like a simple harmonic oscillator). The
unified field in an arbitrary atom–field system will therefore be different from a normal free
radiation. However, below we present a simple situation, in which the emergent unified field
completely resembles a free radiation. We will refer to this ‘free’ unified field as the emergent
radiation.

Consider the free-field Hamiltonian for the unified radiation. Up to an overall factor of
energy, it is

â†â + 1
2 = 2

(
b̂†b̂ + 1

2

)
+ 1

2σ z. (5)

The right-hand side of the above equation shows the corresponding Hamiltonian in terms
of the original atom–field variables. It just happens to be a non-interacting atom–radiation
problem at precisely the twice resonance. It also implies that the ‘photon’ energy of the
emergent radiation is the same as the atomic transition frequency. Thus, equation (5) presents
a special atom–field system, in which the unified radiation emerges as ‘free’. With the benefit
of hindsight, now we can directly demonstrate the existence of this free emergent radiation
without evoking the representation. In figure 1, we present how, at twice resonance, the energy
spectrum of the non-interacting atom–photon system is indistinguishable from that of a free
radiation with photon energy ε. Demanding that the successive eigenstates be equally spaced
leads to the condition, ω = 2ε.2

In experimental terms, it suggests that if there is a two-level atom inside a cavity with
precisely twice-resonant field, then the radiation effects of this system will, in principle, be

1 We have also derived the unified boson representation for the three-level atom (discussed elsewhere). In principle,
it can be done for the multi-level atoms also.
2 One also finds equally spaced eigenstates in the non-interacting atom–photon system for ε = lω, where l is a
positive integer. In this case, however, the lowest l states are non-degenerate, while the rest are two-fold degenerate.
It is therefore different from a free radiation. Moreover, the level spacing in this case is ω, not ε.

3
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Figure 1. Energy-level diagram of a quantized single-mode radiation and a two-level atom in the
non-interacting case. For ω = 2ε, the states of the atom–field system are indistinguishable from
that of a radiation alone.

indistinguishable from that of another cavity with only the radiation of the frequency ε. For
example, a test atom, with transition frequency close to ε, will undergo Rabi oscillations
inside such a cavity. Or, a cavity with the forbidden ε-frequency mode (but allowed 2ε modes)
will actually exhibit or sustain an ε-frequency radiation in the presence of a right atom. The
emergence of a free unified radiation in the non-interacting system, however, presents a trivial
case. Therefore, it is important to ask whether this emergent radiation will survive in an
interacting atom–photon system, or not3.

3. Emergent radiation in an interacting atom–photon model

In order to investigate the emergent radiation in the presence of an atom–photon interaction,
we introduce such modifications in the free-field Hamiltonian of the unified radiation
(equation (5)) that the equidistant character of its eigenstates survives. Clearly, the following
general Hamiltonian fulfils our objective,

H = ε
(
â†â + 1

2

)
+ ξ(â† + â) + η(â†â† + ââ). (6)

It is an exactly solvable model with a displacement term (∝ ξ) and a squeezing (∝ η). This
H is diagonalized by the unitary transformations, D(x) = e−x(â†−â) and U(θ) = e−θ(â†â†−ââ),
where x = ξ

ε+2η
and θ = 1

4 tanh−1
( 2η

ε

)
. For every ket |n〉 of the a-boson, the exact eigenstate

of H is given by |ψn〉 = D(x)U(θ)|n〉, with an eigenvalue, En =
√

ε2 − 4η2
(
n + 1

2

) − ξ 2

(ε+2η)
.

While ξ uniformly lowers the eigenvalue for each n, η renormalizes the frequency of the
unified radiation. However, the basic structure of the eigen spectrum of H remains like that
of a free radiation (that is, En ∝ (n + 1

2 )). The emergent radiation eigenstate, |ψn〉, is now
an entangled state of the atom and the original radiation, unlike in the non-interacting case,
where it is not entangled.

3 It is encouraging to note that the free-field behavior of the emergent radiation definitely survives to the first order
in coupling g in Hdipole, because the leading corrections to the energy eigenvalues of Hdipole appear in O(g2).

4



J. Phys. A: Math. Theor. 42 (2009) 245307 B Kumar

By using equation (1), this H can be converted to the following atom–field problem:

H = 2εHb +
ε

2
σ z + ξ

√
2(b̂†σ− + b̂σ + +

√
Hbσ

x) + η{
√

Hb[(b̂† + b̂) + σ z(b̂† − b̂)] + h.c.},
(7)

where Hb = b̂†b̂ + 1
2 . According to this form, the atom and the radiation interact via

different terms arising due to ξ and η. The atom–field interactions in equation (7) look rather
complicated. However, note the interaction, b̂†σ− + b̂σ +, arising due to ξ . It is the well-known
Jaynes–Cummings interaction, VJC . To keep things simple, we therefore set η = 0 for the rest
of our discussion. A non-zero ξ is sufficient to generate the desired atom–photon interaction.

We now have a sufficiently non-trivial but a simple model in H for η = 0, which preserves
the free-field character of the emergent radiation at twice resonance. The corresponding
atom–photon Hamiltonian is written as

H0 = 2εHb +
ε

2
σ z + ξ

√
2(b̂†σ− + b̂σ + +

√
Hbσ

x). (8)

Besides the physical VJC,H0 also has another piece to the interaction, that is
√

Hbσ
x , which

has not been encountered before. This new interaction cannot be ignored within the rotating
wave approximation, as its time dependence (in the interaction picture) is similar to that of
VJC . While

√
Hbσ

x evolves as
√

Hb(σ
+eiεt + σ−e−iεt ), VJC varies as b̂†σ−eiεt + b̂σ +e−iεt .

Clearly, we cannot drop either of the two on the grounds of being faster. Moreover, we
need both of these anyway for maintaining the free-field character of the emergent radiation.
Therefore, it would be nice to have some physical understanding for

√
Hbσ

x , so that it can
at least formally be considered realistic. Surprisingly, we can show that

√
Hbσ

x is a unitary
transformed version of the interaction, b̂†σ + + b̂σ− (which gets dropped from Vdipole in the
rotating wave approximation).

To establish this unitary connection, consider the original radiation in the number–
phase representation. That is, b̂† =

√
M̂e−i�̂ and b̂ = ei�̂

√
M̂ , where the Hermitian

operators M̂ and �̂ are the number and phase operators, respectively4. Clearly, M̂ = b̂†b̂
and ei�̂M̂ e−i�̂ = M̂ + 1. The latter also implies [M̂, �̂] = i. In this representation,
b̂†σ + + b̂σ− =

√
M̂ e−i�̂σ + + σ−ei�̂

√
M̂ . It prompts us to absorb the phase operator

into σ±. To achieve this, we introduce a unitary transformation, U�̂ = e− i
2 σ z�̂, such that

U†
�̂
σ±U�̂ = σ± e±i�̂. Interestingly, under this transformation, we get

U†
�̂
(b̂†σ + + b̂σ−)U�̂ =

√
M̂ + 1

2σx =
√

Hbσ
x. (9)

This is a beautiful result. It offers a meaningful comparison between the interaction in H0 and
Vdipole. It also suggests that, to physically realize the emergent radiation state, one may need
to (selectively) slow down the fast processes of Vdipole, without affecting the slow terms.

4. Physical effects

Now we discuss some physical results within H0, concerning the emergent radiation.

4 Although the number–phase representation has a limitation due to |m = 0〉 state, we use it in the spirit of a coherent
state, as the emergent radiation eigenstates involve a sum over all |m〉.

5
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4.1. One-photon correlation: sub-harmonic effect

We first compute the time-dependent correlation function of the electric field, Eb(t), of the
original radiation. Since Eb(t) ∝ b̂†(t) + b̂(t), the corresponding one-photon correlation
〈Eb(t)Eb(0)〉 is proportional to G(t), where

G(t) = 〈[b̂†(t) + b̂(t)][b̂†(0) + b̂(0)]〉. (10)

Here, b̂(t) = eiH0t b̂ e−iH0t , and for any operator Ô, the expectation 〈Ô〉 = tr{ρ̂Ô}, where
ρ̂ is a density operator. Since D†(x)H0D(x) = H̃0 = ε

(
â†â + 1

2

) − ξ 2

ε
for x = ξ/ε,

we also transform b̂† to b̂†(x) = D†(x)b̂†D(x), and similarly ρ̂ to ρ̂(x). Therefore,
G(t) = tr{ρ̂(x)[b̂†(x, t) + b̂(x, t)][b̂†(x, 0) + b̂(x, 0)]}, where b̂(x, t) = eiH̃0t b̂(x) e−iH̃0t . In
order to demonstrate how the emergent radiation will manifest itself through G(t), we discuss
two limiting cases: the weak (x � 1) and the strong coupling (x 	 1). For simplicity, we
may take ρ̂ to be either the equilibrium density matrix, e−βH0/tr{e−βH0}, or a pure eigenstate of
H0, that is |ψn〉〈ψn|. For these two choices, ρ̂(x) = e−βH̃0/tr{e−βH̃0} and |n〉〈n|, respectively.

In the weak-coupling limit, we write b̂†(x) + b̂(x) as

b̂†(x) + b̂(x) ≈ (b̂† + b̂) − x
√

2{(σ + + σ−) − [
√

Hb, b̂
† + b̂](σ + − σ−)}, (11)

where the terms of order O(x2) have been ignored. In this limit, we get the following
expression for G(t):

G(t)ξ�ε ≈ 〈b̂†b̂〉 ei2εt + 〈b̂b̂†〉 e−i2εt + 2x2{eiεt [〈σ +σ−〉 + B1〈σ−σ +〉]
+ e−iεt [〈σ−σ +〉 + B2〈σ +σ−〉] + B1〈σ +σ−〉 ei3εt + B2〈σ−σ +〉 e−i3εt }, (12)

where B1 = 〈[√Hb, b̂
†][b̂,

√
Hb]〉 and B2 = 〈[√Hb, b̂][b̂†,

√
Hb]〉. The presence of the

e±iεt terms in equation (12) clearly indicates the dynamical generation of the free emergent
radiation in the system. It is fascinating that, in a system with the radiation of frequency 2ε, a
fundamental note of frequency ε appears due to the interaction. It is as if the original photon
has split into two new photons with half the energy. Even for an arbitrary value of x,G(t) will
only have the terms of frequency ε and its higher harmonics.

In the strong-coupling limit, we can write

b̂†(x) + b̂(x) ≈ 1√
2

[
2x − (â† + â) +

3

4x
(â† − â)2

]
, (13)

where the terms of O(1/x2) have been ignored. The terms containing χ̂(x), which roughly
fall as e−2x2

/x for large x, have been completely ignored. In this case, the correlation function
can be written as

G(t)ξ	ε ≈ c0 +
1

2
[〈ââ†〉e−iεt + 〈â†â〉 eiεt ] +

9

32x2
[〈âââ†â†〉 e−i2εt + 〈â†â†ââ〉 ei2εt ], (14)

where c0 = 2x2 − 3
[〈â†â〉 + 1

2

]
+ · · ·, is a constant term. The terms, e±iεt , corresponding

to the free emergent radiation, again appear in the correlation function. In fact, a striking
feature of equation (14) is that the e±i2εt terms of the original radiation are sub-leading (in
powers of 1/x) compared to the emergent radiation terms. Therefore, the strong-coupling
case of H0 presents an inverse of the second-harmonic generation effect. This new effect
may be called as the half- or sub-harmonic generation. Although this effect resembles the
parametric down-conversion (PDC) in nonlinear optics [10–12], the two are microscopically
different. While the PDC happens due to the interaction between the photons of at least two
different modes of the radiation, the (sub-harmonic) emergent radiation is a consequence of
the atom–photon ‘unification’. For example, the PDC of a photon of energy 2ε to ε-frequency
photons would occur via the scattering process: α̂†α̂†β̂, where α̂ is the annihilation operator

6
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of the ε energy photon and β̂ is that of the incident (2ε energy) photon [13]. In contrast, there
is no explicit ε-frequency mode of the original radiation present in our problem. Instead, the
system collectively behaves as such5.

4.2. Population inversion: atomic coherent state

Now, we briefly discuss the time evolution of the population inversion. For simplicity,
consider only the following choices for the initial state: |n = 0〉 = |m = 0〉 ⊗ |g〉 and
|n = 1〉 = |m = 0〉⊗|e〉. In both cases, the original radiation is in the vacuum state. The exact
population inversion in the two cases is as follows: W0(t) = 〈0|σ z(t)|0〉 = −e−4x2(1−cos εt),
and similarly, W1(t) = [1 − 8x2(1 − cos εt)] e−4x2(1−cos εt). Both W0 and W1 oscillate in
time with frequency ε. Notably, the oscillation frequency is independent of the atom–photon
coupling, unlike in the Rabi oscillations. For x � 1, both W0 and W1 make simple sinusoidal
oscillations. The behavior for x 	 1 changes to periodic pulsing: W0 = −δt=tl = −W1,
where tl = 2π

ε
l and l is an integer. That is, both W0 and W1 remain zero except at tl when

the atom only momentarily recovers (and loses) the initial state. The above features in a
population inversion measurement could be taken as the signatures of an emergent radiation.
The zero population inversion implies an atomic coherent state, with an equal probability for
the atom to be in |g〉 and |e〉. This result offers a method for preparing the atomic coherent
states by means of realizing the emergent radiation. It may be of interest to the coherent atom
optics.

5. Entanglement in the emergent radiation

We end this paper with a discussion on the atom–photon entanglement in an emergent
radiation state. We use a simple measure of bipartite entanglement in a pure state:
E = 1 − trAρ̂2

A = 1 − trRρ̂2
R , where ρ̂A = trRρ̂ and ρ̂R = trAρ̂ are the reduced density

operators of the atom and the original radiation, respectively (with ρ̂ being the full density
operator (a projection operator in a pure state)). Clearly, E = 0 is a necessary and sufficient
condition for the separability of a pure state. It is because ρ̂A and ρ̂R are also projection
operators in such a state (key feature of a separable pure state). Hence, we define the deviation
of the reduced density operators from idempotency, that is E , as a measure of the entanglement6.

Applying this measure to the simplest emergent radiation state |ψ0〉 = e−x(â†−â)|0〉, which

can be written as |ψ0〉 = e− x2

2
∑∞

m=0
x2m√
(2m)!

|m〉 ⊗ [|g〉 − x√
2m+1

|e〉], we get

E(x) = 1
2 (1 − e−4x2

) − 2A2(x) e−2x2
, (15)

where A(x) = x
∑∞

m=0
x4m

(2m)!
1√

2m+1
. As expected, the entanglement is zero for x = 0.

For weak couplings, E increases with x. However, it begins to weaken for x � 1.5 (see
figure 2). In fact, E tends to 0 for x → ∞, because in this limit, A(x) → 1

2 ex2
. This

‘asymptotic’ disentanglement of the radiation from the atom is a novel cooperative effect, in
which the atom lives in a coherent state, 1√

2
(|g〉− |e〉) (also noted in the population inversion),

supported by an effectively decoupled radiation. Although, for simplicity, we have calculated

5 It is important to realize that our unified boson is not independent of the original radiation. That is, â and b̂ do not
commute. In other words, one either works with b̂ and �σ , or with â, not with both simultaneously. In comparison to
this, the photon operators α̂ and β̂ of the PDC problem commute, as they correspond to the independent modes of
radiation.
6 Such a measure of entanglement (that is, the linearized entropy of the reduced density operators) is also known in
the literature as tangle [14, 15].

7
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Figure 2. Entanglement, E , versus atom–field coupling, x = ξ/ε, in the emergent radiation state
|ψ0〉.

the entanglement only in |ψ0〉, the same calculations can also be done for the higher emergent
radiation states, |ψn〉.

6. Conclusion

We have presented the idea of an emergent radiation, clearly stating its novel mathematical
basis supported by physical calculations. Although it is discussed in the context of quantum
optics, the idea is equally applicable to a magnetic-resonance system or any spin-boson
problem, subjected to the corresponding physical interpretations. From a (very contemporary)
perspective, an emergent radiation state with its atom–photon entanglement could be of interest
to the quantum information community, as it integrates the information carrying ‘qubit’ with
the carrier ‘light’. It may be fruitful to investigate such an emergent ‘qubit–light’ state as a
quantum informatic system.
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